Using Control Charts to Monitor Process and Product Profiles
نویسندگان
چکیده
In most statistical process control (SPC) applications, it is assumed that the quality of a process or product can be adequately represented by the distribution of a univariate quality characteristic or by the general multivariate distribution of a vector consisting of several correlated quality characteristics. In many practical situations, however, the quality of a process or product is better characterized and summarized by a relationship between a response variable and one or more explanatory variables. Thus, at each sampling stage, one observes a collection of data points that can be represented by a curve (or profile). In some calibration applications, the profile can be represented adequately by a simple straight-line model, while in other applications, more complicated models are needed. In this expository paper, we discuss some of the general issues involved in using control charts to monitor such processand product-quality profiles and review the SPC literature on the topic. We relate this application to functional data analysis and review applications involving linear profiles, nonlinear profiles, and the use of splines and wavelets. We strongly encourage research in profile monitoring and provide some research ideas.
منابع مشابه
Phase II monitoring of auto-correlated linear profiles using linear mixed model
In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...
متن کاملA Self-starting Control Chart for Simultaneous Monitoring of Mean and Variance of Simple Linear Profiles
In many processes in real practice at the start-up stages the process parameters are not known a priori and there are no initial samples or data for executing Phase I monitoring and estimating the process parameters. In addition, the practitioners are interested in using one control chart instead of two or more for monitoring location and variability of processes. In this paper, we consider a s...
متن کاملA Generalized Linear Statistical Model Approach to Monitor Profiles
Statistical process control methods for monitoring processes with univariate ormultivariate measurements are used widely when the quality variables fit to known probabilitydistributions. Some processes, however, are better characterized by a profile or a function of qualityvariables. For each profile, it is assumed that a collection of data on the response variable along withthe values of the c...
متن کاملDeveloping new methods to monitor phase II fuzzy linear profiles
In some quality control applications, the quality of a process or a product is described by the relationship between a response variable and one or more explanatory variables, called a profile. Moreover, in most practical applications, the qualitative characteristic of a product/service is vague, uncertain and linguistic and cannot be precisely stated. The purpose of this paper is to propose a ...
متن کاملMonitoring Nonlinear Profiles Using Wavelets
In many manufacturing processes, the quality of a product is characterized by a non-linear relationship between a dependent variable and one or more independent variables. Using nonlinear regression for monitoring nonlinear profiles have been proposed in the literature of profile monitoring which is faced with two problems 1) the distribution of regression coefficients in small samples is unkno...
متن کاملPhase-II Monitoring of AR (1) Autocorrelated Polynomial Profiles
In some statistical process control applications, quality of a process or product can be characterized by a relationship between a response and one or more independent variables, which is typically referred to a profile. In this paper, polynomial profiles are considered to monitor processes in which there is a first order autoregressive relation between the error terms in each profile. A remedi...
متن کامل